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Starting flow generated by the impulsive start of a floating wedge
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Abstract. The initial stage of the plane unsteady flow caused by the impulsive vertical motion of a wedge ini-
tially floating on an otherwise flat free surface is investigated with the help of a combination of numerical and
asymptotic methods. The liquid is assumed ideal and incompressible and its flow potential. Compressible effects
give a negligible contribution to the flow close to the entering body at the stage considered in the present paper.
The vertical velocity of the body is constant after the impulsive start. The flow domain is divided into an outer
region, where the first-order solution is given by the pressure-impulse theory, and inner regions close to the inter-
section points between the free surface and the moving body. The relative displacement of the body plays the role
of a small parameter. The inner solution is matched with the outer one. The outer solution is given in quadr-
atures but the inner solution, which is shown to be nonlinear and self-similar, can be found only numerically.
With the aim of deriving the inner solution, the inner region is divided into three parts. In the far-field zone the
solution is given in terms of its asymptotic behavior while, in the jet region, attached to the wedge, the flow is
described by a second-order shallow-water approximation. In the intermediate region a boundary-element method
is used, which is suitably coupled with the solutions in both the jet and the far-field regions through an iterative
pseudo-time stepping procedure. The procedure is dependent on the deadrise angle of the wedge. If the angle is
equal or smaller than π/4, eigensolutions appear in the far-field asymptotics and their amplitudes are recovered
together with the solution. The approach is applied to different values of the wedge deadrise angle. The obtained
results can be used to improve the prediction of the hydrodynamic loads acting on floating bodies, the velocity
of which changes rapidly.
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1. Introduction

The unsteady flow caused by an impulsive vertical motion of a floating flared body is con-
sidered. The motivation for this research comes from naval hydrodynamics, where ships may
undergo sudden motions in the vertical plane, giving rise to high hydrodynamic loads. Such
loads occur mainly at the bow part of the ship, which is usually flared. The wedge is consid-
ered here as the simplest representation of flared bodies and the impulsive vertical motion of
a floating wedge represents a sudden change of the velocity of a ship section.

The present paper is focused on the understanding of the initial transient stage after the
impulsive start of a wedge floating on a liquid surface, when the initial draft of the body mat-
ters. The study is carried out within the framework of potential flow of ideal and incompress-
ible fluid without both surface-tension and gravity effects and the entry velocity is assumed to
be constant.

The unsteady flow caused by a sudden motion of a floating body is usually described by
using the pressure-impulse concept. This approach provides the flow pattern near the body
after a short compressible stage [1]. However, in the case of a flared body, the pressure-
impulse solution is not uniformly valid close to intersection points between the free surface
of the liquid and the body surface where the liquid velocity exhibits a singularity.
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The difficulties with the initial asymptotics appear even in the case of non-flared bodies.
For example, the plane problem of a semi-submerged circular-cylinder impact was numerically
solved by Vinje and Brevig [2] and by Faltinsen [3]. The computed hydrodynamic forces are
rather different. Vinje [4] wrote “The difference between the two solutions seems to appear
in the second derivative of the force at time equal to zero.... the different ways Faltinsen and
Vinje & Brevig treated the intersection point problem might very well explain the difference
between the results. A solution of the “inner” problem might resolve this question, but so far
this solution has not been calculated; what has been published so far is based on linear the-
ory.” This observation shows the importance of the initial asymptotics of the flow and, in
particular, of the “inner” solutions near the intersection points for numerical simulations of
the impact.

The leading-order “inner” solution of the flow near the intersection points in the case of
a semi-submerged circular-cylinder impact has been derived recently in [5]. This inner solu-
tion was matched to the second-order outer solution. It should be noted that the singularity
appears in the second-order outer solution of the problem but the first-order outer solution is
regular [4]. In order to answer the question raised in [4] about the initial asymptotics of the
hydrodynamic force on a vertically moving cylinder, higher-order inner and outer solutions
are required, at least up to the fourth-order of the outer solution. The fourth-order uniform
asymptotics of the solution has not been derived so far.

As an example of a flow where the first-order outer solution is already singular, a small-time
expansion procedure has been used in [6] to study the flow induced by a vertical plate uniformly
accelerating from the rest in a stationary fluid under the action of gravity. A uniformly valid
solution has been derived by using the method of the matched asymptotic expansions.

In the case of a flared-body impact the first-order outer solution is singular. The first-
order outer solution of the problem of floating-wedge impact was obtained by Sedov [7]. One
may expect that the corresponding “inner” solution, describing the flow near the intersection
points, much stronger affects the total hydrodynamic force on the entering body than in the
case of semi-submerged-cylinder impact. We are unaware of any results on the flow near the
intersection point of a flared body starting to move suddenly. These results could be helpful,
not only for study of starting flows but also for numerical simulations of the developed flows.

In order to obtain a uniformly valid description of the flow during the initial stage, an
inner solution is considered near the intersection points within stretched variables (Section
4). Taking the ratio between the vertical displacement of the wedge and its initial draft as
a small parameter, it is shown that the inner solution is approximately self-similar, nonlin-
ear and depends only on the deadrise angle of the wedge. For the determination of the inner
solution the corresponding boundary-value problem is reformulated with the help of a modi-
fied velocity potential which drastically simplifies the boundary conditions on the free surface,
whose shape is unknown in advance and has to be determined as part of the solution.

To compute the first-order inner solution, a numerical pseudo-time stepping procedure is
developed. The procedure is based on the boundary-integral representation of the velocity
potential. The asymptotic behavior of the solution in the far field is recovered in Section 5
and is used to provide improved boundary conditions at the far field boundary of the reduced
computational domain and a first guess of the free-surface shape. A shallow-water model is
presented in Section 6 aimed at simplifying the solution of the flow in the thin jet layer. An
improved version of this model, which is presented in the appendix, is directly incorporated
into the numerical solver, thus yielding a significant reduction in the computational effort
needed to describe the flow field in the thin jet region. The numerical model is presented in
Section 7 and results are shown in Section 8, along with their careful verification.
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In the case of constant entry velocity, it is believed that the fluid flow in a later stage of
the evolution is quite independent of the flow details at the initial phase. This means that,
when the vertical displacement of the wedge becomes much larger than its initial draft, the
solution is expected to approach the classical self-similar solution of the wedge-entry prob-
lem [8]. The first-order small-time approximation employed here does not allow a verification
of this point. Large-time asymptotics of the floating-wedge-impact solution is required, which
can be obtained only by numerical analysis of the developed flow.

Although the case of the floating wedge is considered here as a representative of flared
bodies, generalization of the results obtained below to both more complicated shapes and
three-dimensional configurations is straightforward and is discussed briefly in the concluding
section.

2. Formulation of the problem

The starting flow caused by unsteady interaction between the liquid and a floating wedge is
considered (see Figure 1). Initially, both the liquid and the body are at rest. Let xc=h0 cot γ ,
where γ is the deadrise angle and h0 is the initial draft of the wedge. The part of the liq-
uid boundary |x|>xc, y=0 corresponds to the free surface, where the pressure is zero at all
times. The points (−xc,0) and (xc,0) are referred to as the left- and right-hand side inter-
section points, respectively. At some instant of time, taken as initial (t = 0), the wedge sud-
denly begins to move down with a constant velocity V . The wedge is rigid and the flow is
plane, irrotational and symmetric with respect to the axis x= 0. The liquid is assumed ideal
and incompressible. External mass forces and surface-tension are neglected at the initial stage
under consideration in the present study. We shall determine the liquid flow and the shape of
the liquid free surface during the initial stage, when V t/h0 � 1, with special attention given
to the fine pattern of the flow near the intersection points.

In this paper the deadrise angle γ is positive and less than π/2. The limiting cases γ �1
and π/2−γ �1 are not considered. The case of a floating-wedge impact with a small deadrise
angle, γ � 1, was studied by Oliver [9] within the Wagner approach [10]. The case γ →π/2
corresponds to the vertical-plate impact, the initial asymptotics for which was given in [6].

The liquid flow is described by the velocity potential φ(x, y, t), for which the initial-bound-
ary-value problem has the form

φxx +φyy =0 (in �(t)), (1)

φy =φx tan γ −V (on �b(t)), (2)

2φt +φ2
x +φ2

y =0 (on �f (t)), (3)

Ht +∇H ·∇φ=0 (on �f (t)), (4)

H(x, y,−0)=0, φ(x, y,−0)=0, (5)

φ(x, y, t)→0 (x2 +y2 →∞), (6)

where �(t) is the fluid domain at instant t . The boundary of the flow region consists of
two parts: the free surface �f (t) described by the equation H(x, y, t)=0, where the function
H(x, y, t) has to be determined together with the velocity potential, and the entering body
surface �b(t) given by the equation y= |x| tan γ − h0 −V t . On the wetted part of the body
surface �b(t) condition (2) has to be satisfied, which implies that the normal component of
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the velocity of the body and that of the liquid particles are equal to each other. On the free
surface �f (t) dynamic (3) and kinematic (4) boundary conditions hold. Condition (6) implies
that far from the moving body the liquid is at rest at any time. The initial conditions (5) state
that the liquid is at rest before impact. Once problem (1–6) has been solved, the velocity field
u = (u, v), u=φx , v=φy , and the hydrodynamic pressure p(x, y, t)=−ρ0(φt + 1

2 |∇φ|2), where
ρ0 is the liquid density and ∇φ= (φx, φy), can be evaluated.

In the following, the initial asymptotics of the liquid flow is derived with the aim of clar-
ifying the flow pattern close to the intersection point during an early stage of the motion
when the displacement of the wedge is still rather smaller than its initial submergence, that
is V t/h0 �1. This is achieved by using the pressure-impulse theory which can be considered
as the first-order approximation within the small-time expansion procedure. According to this
procedure, the solution of the boundary-value problem (1–6) is sought in the form

φ(x, y, t)= [φ0(x, y)+φ1(x, y)t+φ2(x, y)t
2 +· · · ]χ(t),

H(x, y, t)=y−f (x, t), (7)

f (x, t)= [f1(x)t+f2(x)t
2 +· · · ]χ(t),

where χ(t)=1 when t >0 and χ(t)=0 when t≤0. Substituting Equation (7) in equations (1–
4) and (6), expanding the boundary conditions (2) and (3) about the initial position of the
boundary of the liquid region (this technique is known as the Stokes procedure) and collect-
ing terms of the same order as t→0, we arrive at boundary-value problems for unknown har-
monic functions φj (x, y) in the region �(0) and the functions fj (x), where x >xc and j ≥0.

The small-time expansion procedure was effectively used by Ovsyannikov [11] in the non-
linear problem of a bubble raising toward the liquid free surface and by Tyvand and Miloh
[12] in the problem of a circular submerged cylinder starting to move impulsively. In all these
problems there are no intersection points between the body and the free surface. The method
is very powerful. In particular, Ovsyannikov [11] proved that the solution obtained with the
help of the small-time expansion procedure is an analytical function of time and the blow-
up instant for the obtained solution was estimated. It is expected that similar results can be
obtained also for the problem of circular-cylinder motion beneath the free surface, where the
third-order solution as t→0 was derived in [12].

In the problem of flared-body impact the small-time expansion procedure cannot be used
in its classical form as represented by expansions (7). This is due to the fact that a solution
of the form (7) is singular at the intersection points and has to be considered an “outer”
solution. Near the intersection points an “inner” solution has to be introduced. Considering
time t as a small parameter in (1–6), we can conclude that the problem is singularly per-
turbed. According to the theoretical background of asymptotic methods (see, [13] and [14]),
one needs, first, to construct the first-order outer solution φ0(x, y), which is the solution given
by the pressure-impulse theory; second, to find the first-order inner solution in a small vicinity
of the intersection points and to match it with the first-order outer solution. Then one needs
to determine the second-order outer solution and match it with the first-order inner solution.
We cannot guarantee in advance that the second-order outer expansion of the velocity poten-
tial will be of the order of O(t) as it is shown in expansion (7). This is because there is a
possibility that the effect of the inner solution on the outer solution is so strong that already
the second-order term of the velocity potential in the outer region is determined by details of
the flow near the intersection points. Then one needs to obtain the second-order inner solu-
tion and match it with the second-order outer solution, and so on. Proceeding thus, one can
derive accurate and uniformly valid initial asymptotics of the flow caused by floating-body
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impact. Using this asymptotics is suggested instead of the initial conditions (5) to start reli-
able numerical simulations of the impact problem and to improve predictions of the hydrody-
namic loads on floating flared bodies.

The technique described above is known as the method of matched asymptotic expansions.
The procedure of matching was suggested by Poincare (see, [13]). For the floating-wedge-
impact problem the first-order outer solution was given by Sedov [7] and it can also be found
in a recent paper by Mei, Liu and Yue [15]. The corresponding inner solution can only be
determined numerically. This solution is valid at the intermediate stage when V/c0 � tV /h0 �
1. In this paper we restrict ourselves to the first-order inner solution of the original problem
(1–6) while focussing on the main features of both the flow and the free-surface shape close
to the intersection points.

From a rigorous mathematical point of view the construction of the uniformly valid
asymptotic solution is a first necessary step, upon which the obtained asymptotic solution
has to be justified. In order to justify the asymptotic solution, one has to (i) prove that the
solution of the original problem (1–6) exists, is unique and is continuously dependent on the
parameters of the problem; (ii) formulate the boundary-value problem with respect to the aux-
iliary functions which represent the difference between the exact and the asymptotic solution;
(iii) obtain uniformly valid estimates for these auxiliary functions; (iv) demonstrate that the
auxiliary functions tend to zero faster than both the exact and the asymptotic solution. It is
seen that a complete rigorous analysis of the initial impact stage is divided into two parts: (1)
construction of the uniformly valid asymptotic solution, which is usually performed with the
help of methods of asymptotic analysis (see, [13]) and (2) justification of the obtained asymp-
totic solution using the theory of boundary-value problems. The present paper deals only with
the first step of this program.

3. First-order outer solution

In accordance with the general theory of asymptotic methods, by substituting (7) in Equa-
tions (1–6) and letting t tend to zero, we find to leading order

∂2φ0

∂x2
+ ∂2φ0

∂y2
=0 (in �(0)),

∂φ0

∂y
= ∂φ0

∂x
tan γ −V (y=|x| tan γ −h0, |x|<xc), (8)

φ0 =0, f1(x)= ∂φ0

∂y
(y=0, |x|>xc),

φ0 →0 (x2 +y2 →∞).

The solution of the boundary-value problem (8) was obtained by Sedov [7] in the form

φ0 + iψ0 = iV (z− l

w

√
τ 2 −1), (9)

where ψ0(x, y) is the stream function, z=x+ iy, l=h0/ sin γ is the distance from the wedge
apex to the intersection point (xc,0), τ =τ(z) is the complex function defined by the equation

z=−ih0 + l

w
eiγ
∫ τ

0

(
τ 2

0

1− τ 2
0

) γ
π

dτ0 (10)
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and w(γ ) is given as

w(γ )=
∫ 1

0

(
τ 2

0

1− τ 2
0

) γ
π

dτ0 = 1√
π
�

(
1
2

+ γ

π

)
�
(

1− γ

π

)
. (11)

Sedov’s solution (9) predicts an unbounded velocity of the flow close to the intersection
points x=±xc, y=0. Due to the flow symmetry, only the right-hand-side intersection point,
x= xc, y= 0, is considered below. Equation (10) shows that τ(xc)=1 at that point, and τ =
1 + ε, where ε is a new complex variable, |ε| � 1, in a small vicinity of the right-hand-side
intersection point. Substituting τ =1+ε and τ0 =1+εδ in (10) and using (11) and the equal-
ity

∫ τ

0

(
τ 2

0

1− τ 2
0

) γ
π

dτ0 =w+ εe−iγ
∫ 1

0

(1+ εδ) 2γ
π dδ

(2+ εδ) γπ (εδ) γπ
,

we find to leading order as |ε|→0

z−xc= h0

w sin γ
πε

β
π

2
γ
π β

[1+o(1)], (12)

where β=π −γ . Solution (9) can be presented in the form

φ0 + iψ0 = iV xc+ iV [z−xc− lε 1
2 (2+ ε) 1

2 /w],

where z−xc=O(ε
β
π )=o(ε 1

2 ) as |ε|→0 due to the inequality β > π
2 . Therefore,

φ0 + iψ0 ∼ iV xc− iV
l

w
(2ε)

1
2 (13)

for small ε. Equations (12) and (13) give to leading order as |ε|→0:

φ0 + iψ0 ∼−iV h1−σ0
0 F(γ )(z−xc)σ0 + iV xc,

where σ0 =π/(2β) and F(γ )=σ−σ0
0 (w sin γ )σ0−1. Taking the real part of the latter asymptotic

formula, we finally arrive at

φ0 ∼−Arσ0 cos(σ0θ), (14)

xc

h0

x

y

γ

θ r

Figure 1. Sketch of the floating wedge in the
physical frame of reference.

ρ

γ

θ
λ

µ

still liquid surface

body contour

Figure 2. Sketch of the floating wedge in the stretched
variable plane.
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where A=VF(γ )h1−σ0
0 and r, θ are polar coordinates such that z−xc= reiθe−iβ , with the ori-

gin at the intersection point, θ=0 on the wedge surface and θ=β on the still liquid surface.
The asymptotic behavior of the free surface elevation as V t/h0 →0 and r/h0 →0 is described
by the equality

y=Aσ0r
σ0−1t [1+o(1)], (15)

which follows from the kinematic boundary condition (4) and the asymptotics of the velocity
potential (14). Since 0<γ <π/2, we find

π

2
<β<π,

1
2
<σ0<1. (16)

Inequalities (16) and the asymptotic formulae (14) and (15) imply that Sedov’s solution pre-
dicts a non-physical flow field with unbounded velocities of the liquid particles on the free
surface close to the intersection point. In order to resolve the flow singularity in a small vicin-
ity of the intersection point and provide uniformly valid asymptotics of the solution, which
can be used for further numerical calculations, an inner solution has to be introduced.

4. First-order inner solution

The inner solution is sought within the stretched local coordinates λ, µ which are introduced
as follows (see Figure 2)

x=xc+a(t)λ, y=a(t)µ, ρ=
√
λ2 +µ2, (17)

where a(t)→0 as t→0, in the form

φ(x, y, t)=Aaν(t)ϕ(λ,µ, t), (18)

H(x, y, t)=η(λ,µ, t). (19)

The constant ν and the function a(t) have to be determined from the matching condition.
The function ϕ(λ,µ, t) is referred to as the inner velocity potential and the unknown func-
tion η(λ,µ, t) describes the free-surface shape in the local coordinates.

The matching condition implies that the local asymptotics of the first-order outer velocity
potential (14), rewritten in the local stretched coordinates (17), matches representation (18) as
ρ→∞ but a(t)ρ→0. Comparing (14) and (18), we conclude that the matching condition is
satisfied if ν=σ0 and

ϕ∼−ρσ0 cos(σ0θ) (ρ→∞) (20)

for the inner velocity potential.
Substituting Equations (17) and (18) in the dynamic boundary condition (3), we obtain

σ0ϕ+ 1
2
A
aσ0

aȧ
|∇ϕ|2 =λϕλ+µϕµ− a

ȧ
ϕt , (21)

where dot stands for the time derivatives. In Equation (21) the quantity

a/ȧ

Aaσ0/(aȧ)
= 1
A
a2−σ0
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tends to zero as a(t)→ 0. Therefore, the term in Equation (21) with the time derivative can
be neglected in the leading order comparing to the nonlinear term as t → 0. The nonlinear
term is of the same order as other terms in Equation (21) if

da
d t

=Aaσ0−1.

If the nonlinear term is small compared to the linear ones as t → 0, we arrive at the lin-
ear inner problem, which cannot help us to resolve the flow singularity near the intersection
point. If the linear terms in (21) are of higher orders compared to the nonlinear term, then
there is no hope to satisfy condition (20) and match the inner solution to the outer one. The
differential equation for the function a(t) with account for the initial condition a(0)=0 pro-
vides

a(t)= [(2−σ0)At ]
1

2−σ0 . (22)

We conclude that the dynamic boundary condition on the free surface can be approximated
during the initial stage as

σ0ϕ+ 1
2
|∇ϕ|2 ≈λϕλ+µϕµ (23)

in a small vicinity of the intersection point. The dimension of this vicinity is of the order of
O[a(t)], where the function a(t) is given by formula (22).

Correspondingly, the kinematic boundary condition (4) can be rewritten as

∇η ·∇ϕ=ληλ+µηµ− a

ȧ
ηt

within the local coordinate system, where Equations (19) and (22) were taken into account.
The ratio a/ȧ is equal to (2 −σ0)t and in the leading order as t→ 0 the term with the time
derivative can be neglected, thus leading to

∇η ·∇ϕ≈ληλ+µηµ. (24)

The Laplace equation (1) keeps its form

ϕλλ+ϕµµ=0 (25)

in the stretched coordinates, and the boundary condition (2) gives

ϕµ=ϕλ tan γ − V

A
a1−σ0 (µ=λ tan γ −V t/a(t)),

which, in the leading order as t→0, provides

ϕµ=ϕλ tan γ (µ=λ tan γ ). (26)

The performed analysis indicates that the first-order inner solution does not depend on time
but only on the spatial stretched variables λ and µ. This implies that the starting flow close
to the intersection point is self-similar and nonlinear in the leading order as t→0.

The liquid flow in a small vicinity of the intersection point is approximately described
within the local polar coordinates ρ, θ by the velocity potential ϕ(ρ, θ), the boundary-value
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problem for which has the form

�ϕ=0 (in �i),
∂ϕ

∂θ
=0 (µ=λ tan γ ),

σ0ϕ+ 1
2
|∇ϕ|2 =ρ ∂ϕ

∂ρ
(on �i), (27)

∇η ·∇ϕ=ρ ∂η
∂ρ

(on �i), ϕ∼−ρσ0 cos (σ0θ) (ρ→∞),

where the flow domain �i is bounded by the rigid wall, µ=λ tan γ , on the left and by the free
surface �i on the top. It should be noted that the variables in the “inner” problem (27) are
non-dimensional. The position of the free surface close to the intersection points is described
by the equation η(ρ, θ)=0.

The boundary-value problem (27) is not easy to solve because the position of the free sur-
face �i is unknown in advance and must be determined as a part of the solution. Without
introducing any further approximation, it is useful to rewrite the boundary-value problem (27)
in terms of a modified velocity potential S(λ,µ) such that

S(λ,µ)=ϕ(λ,µ)− 1
2
ρ2. (28)

This new unknown function satisfies the Poisson equation

�S=−2 (in �i). (29)

Moreover, Equation (28) provides ∇η · ∇ϕ= ∇η · ∇S+ ρ(∂η/∂ρ), which makes it possible to
present the kinematic boundary condition as ∇η ·∇S=0. Therefore, the normal derivative of
the function S(λ,µ) vanishes on the liquid free surface

Sn=0 (on �i). (30)

The dynamic boundary condition becomes

σ0

(
ρ2

2
+S

)

+ 1
2

(
(λ+Sλ)2 + (µ+Sµ)2

)
=ρ (ρ+Sρ

)
,

which gives

σ0

2
ρ2 +σ0S+ 1

2

[
ρ2 +2ρSρ +|∇S|2

]
=ρ2 +ρSρ.

Since |∇S|2 =S2
n +S2

τ on the free surface, where Sτ is the derivative along the boundary and
Sn=0 due to (30), the previous equation takes the form

S2
τ +2σ0S= (1−σ0)ρ

2 (on �i). (31)

In terms of the new velocity potential the body boundary condition reads

Sn=0 (µ=λ tan γ ). (32)

Finally, the condition at infinity (20) yields

S∼−1
2
ρ2 −ρσ0 cos (σ0θ). (33)
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Two boundary-value problems have been introduced to describe the same solution. The
first, (27), deals with the Laplace equation but the boundary conditions are rather compli-
cated. The second deals with the Poisson equation (29), the boundary conditions for which
are much simpler. It is important to notice that, once the free-surface shape is known, the
function S(λ,µ) along the free surface can be obtained by integration of the boundary condi-
tion (31) with account taken of (33). Then the velocity potential ϕ(λ,µ) and its normal deriv-
ative ϕn on the free surface can be recovered with the help of Equations (28) and (30). The
velocity field in the inner region can be evaluated numerically thereafter using Green’s theo-
rems.

It is important to notice that the boundary-value problem (27) looks like that describing
the self-similar flow caused by wedge entry at a constant velocity. However, there are several
specific features of the boundary-value problem (27), which force us to study this problem
independently on the well developed theory of wedge-entry: (1) the dynamic boundary condi-
tion in (27) is identical to that for the wedge-entry problem if and only if σ0 =1; in this case
Equation (31) can be integrated analytically, which essentially simplifies the following anal-
ysis; (2) the body boundary condition in the wedge-entry problem is non-homogeneous; the
requirement that the boundary condition on the body surface and the boundary conditions
on the free surface match at the jet tip provides the constant, which appears upon integration
of Equation (31) with σ0 =1; (3) in the present problem the forcing comes from the condition
at infinity, while in the wedge-entry problem it comes from the body boundary condition; (4)
the value σ0 = 1 corresponds to the deadrise angle γ =π/2, which means that the wedge is
just a vertical plate.

It should be noted that the solution of the inner boundary-value problem predicts
unbounded velocities of the flow as V t/h0 → 0. In order to resolve this singularity, the cor-
responding compressible solution has to be obtained for the very initial stage, when c0t/h0 =
O(1) and matched to the solution of the inner problem (27) as c0t/h0 →∞ but V t/h0 → 0
[16].

A numerical approach aimed at solving the boundary-value problem for the inner flow
and determining the self-similar solution is presented in Section 7. In the following, some
features of the inner solution in the far-field and in the jet region are investigated through
asymptotic analysis. Apart from providing useful insight into the characteristics of the solu-
tion, the knowledge of its asymptotic behavior in the far-field and in the jet region allows us
to develop an efficient numerical algorithm and significantly reduce the size of the computa-
tional domain.

5. Asymptotic behavior of the inner solution in the far-field

The polar coordinates ρ, θ (Figure 2) are used below. In the far-field, ρ
1, the shape of the
free surface can be described by the equation θ= θ̃ (ρ), where θ̃ (ρ)→β as ρ→∞. The func-
tion θ̃ (ρ) can be presented in the form

θ̃ (ρ)=β+ θ1(ρ), θ1(ρ)→0 as ρ→∞ . (34)

It is required to determine the asymptotic behavior of the solution of the boundary-value
problem (29–33) and the asymptotics of the function θ1(ρ) as ρ→∞. The radial coordinate
ρ is considered here as a large parameter. The far-field asymptotics of the functions S(ρ, θ)
and θ1(ρ) are not easy to find because S(ρ, θ) is defined in the region, the shape of which
depends on the unknown function θ1(ρ). It can be shown that the Stokes procedure, which
is traditionally used in such cases, does not work for this particular problem. This is why we
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suggest to map the far-field part of the inner flow region into a wedge-shaped region using
the relation

α= θ β

θ̃(ρ)
(35)

and introduce the new unknown function S(ρ,α) by the equation

S(ρ,α)=S
(
ρ, θ

β

θ̃(ρ)

)
=S(ρ, θ) . (36)

The function S(α,ρ) is defined in the region 0<α<β, ρ
1, whose shape does not already
depend on the large parameter ρ.

As a drawback of the simpler shape of the fluid domain, the Poisson equation (29) and the
boundary conditions (30) and (31) take more complicated forms. Using (34) and the formula

dτ =
√

1+ρ2θ̃2
ρ dρ, we can rewrite the dynamic boundary condition (31) as

S
2
ρ

1+ρ2θ̃2
ρ

+2σ0S= (1−σ0)ρ
2 (α=β,ρ
1), (37)

while, in polar coordinates, the kinematic boundary condition on the free surface (30) leads
to

Sθ =ρ2θ̃ρSρ on θ = θ̃ (ρ).

By using Equations (34) and (35), we can present the kinematic boundary condition as

dθ̃
dρ

= βSα(ρ,β)[1+ρ2θ̃2
ρ ]

ρ2θ̃ (ρ)Sρ(ρ,β)
(38)

which is suitable for asymptotic analysis of the free-surface shape in the far-field.
In terms of the new variables ρ and α, the boundary condition on the body contour,

Sθ (ρ,0)=0 provides

∂S

∂α
=0 (α=0, ρ
1) (39)

while the far-field condition (33) changes as follows

S∼−1
2
ρ2 −ρσ0 cos (σ0α) (ρ→∞). (40)

The Poisson equation (29)

Sρρ + 1
ρ
Sρ + 1

ρ2
Sθθ =−2

also changes due to the transformation of variables. Using Equations (34) and (35), we obtain

Sρρ + 1
ρ
Sρ + 1

ρ2
Sαα =−2+U(ρ,α) (0<α<β, ρ
1), (41)

where

U(ρ,α)=−2Sρααρ −Sααα2
ρ −Sααρρ −ρ−1αρSα +ρ−2

[
1− (β/θ̃)2

]
Sαα
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with αρ and αρρ given as

αρ =−αθ̃ρ/θ̃(ρ), αρρ =α[2θ̃2
ρ − θ̃ θ̃ρρ ]/θ̃2(ρ).

The boundary-value problem (37–41) is solved by the method of successive approximations.
Condition (40) implies that in the far-field the function S(ρ,α) has the form

S(ρ,α)=−1
2
ρ2 −ρσ0 cos(σ0α)+S1(ρ,α), (42)

where S1(ρ,α)ρ
−σ0 →0 as ρ→∞. Substituting the representations of the unknown functions

(34) and (42) in (37–41) and taking the leading-order terms, we obtain

dθ1

dρ
=−σ0ρ

σ0−3[1+o(1)], (43)

from which we have

θ1(ρ)= σ0

2−σ0
ρσ0−2 + θ2(ρ). (44)

In terms of S1 the Poisson equation reads

S1ρρ + 1
ρ
S1ρ + 1

ρ2
S1αα =σ

2
0

β

[
(2−3σ0)α sin (σ0α)+ 2σ0

2−σ0
cos (σ0α)

]

×ρ2σ0−4[1+o(1)], (0<α<β, ρ
1), (45)

while the dynamic boundary condition with account for the asymptotic behavior (43), gives

−2ρS1ρ +2σ0S1 =σ 2
0 ρ

2σ0−2[1+o(1)] (α=β, ρ
1),

yielding

S1(ρ, β)=
σ 2

0

2(2−σ0)
ρ2σ0−2 +S2(ρ, β), (46)

where S2(ρ, β) represents a higher-order contribution, S2(ρ, β)ρ
2−2σ0 →0 as ρ→∞.

The solution of the boundary-value problem (45), (46) along with the kinematic boundary
condition and the condition along the body contour is sought in the form

S1(ρ,α)=M(α)ρ2σ0−2 +S2(ρ,α) (0<α<β). (47)

It is worth noticing that this problem admits the eigensolution

S1E(ρ,α)=C1ρ
−σ0 cos (σ0α), (48)

which should be added to the particular solution (47). However, eigensolution (48) can be
neglected in comparison with the term M(α)ρ2σ0−2 in (47) as long as 2σ0 − 2>−σ0, that is
σ0>2/3 and γ >π/4. This case is considered first.

Substituting (47) in Equation (45) and retaining the leading-order terms, one gets the ordi-
nary differential equation

Mαα +4(1−σ0)
2M= 1

β
σ 2

0 (2−3σ0)α sin (σ0α)+ 2
β

σ 3
0

2−σ0
cos (σ0α), (0<α<β) (49)
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with the boundary conditions

Mα(0)=0, M(β)= σ 2
0

2(2−σ0)
. (50)

Therefore

M(α)= σ 2
0

(2−σ0)

{
α

β
sin (σ0α)+ cos [2(1−σ0)α]

2 cos (2γ )

}
(0<α<β),

that is

S(ρ,α)=−1
2
ρ2 −ρσ0 cos(σ0α)+

σ 2
0

(2−σ0)

{
α

β
sin(σ0α)+ cos[2(1−σ0)α]

2cos(2γ )

}
ρ2σ0−2

+S2(ρ,α). (51)

As the next step, the representations (44) and (51) are substituted in the kinematic and
dynamic boundary conditions; taking the leading order as ρ→∞, we obtain

θ̃ (ρ)=β+ σ0

2−σ0
ρσ0−2 − σ 2

0 (1−σ0)

2(2−σ0)
2

tan (2γ )ρ2σ0−4 + θ3(ρ). (52)

S(ρ,β)=−1
2
ρ2 + σ 2

0

2(2−σ0)
ρ2σ0−2 − σ 3

0 (1−σ0)

2(2−σ0)
2

tan (2γ )ρ3σ0−4 +S3(ρ, β), (53)

where θ3(ρ)ρ
4−2σ0 → 0 and S3(ρ, β)ρ

4−3σ0 → 0 as ρ → ∞. The asymptotic behavior of the
function S2(ρ,α) is not considered here. It can be shown that the far-field asymptotics of the
free-surface shape as given by Equation (52) corresponds to the asymptotics of the outer solu-
tion (15) near the intersection point.

A similar procedure can also be used for deadrise angles smaller that π/4. However, in
this case the eigensolution (48) is no longer negligible and the asymptotic formula (47) has
to be modified as

S1(ρ,α)=C1ρ
−σ0 cos (σ0α)+M1(α)ρ

2σ0−2 +S2(ρ,α).

After manipulations which are not represented here, in the case γ <π/4 we obtain

S(ρ,α)=−1
2
ρ2 −ρσ0 cos (σ0α)+C1ρ

−σ0 cos (σ0α)

+ σ 2
0

(2−σ0)

{
α

β
sin (σ0α)+ cos [2(1−σ0)α]

2 cos (2γ )

}
ρ2σ0−2[1+o(1)], (54)

θ̃ (ρ)=β+ σ0

2−σ0
ρσ0−2 − σ0C1

2+σ0
ρ−(σ0+2)− σ 2

0 (1−σ0)

2(2−σ0)
2

tan (2γ )ρ2σ0−4 + θ3(ρ). (55)

Correspondingly, from the dynamic boundary condition, it follows

S(ρ,β)=−1
2
ρ2 + σ 2

0

2(2−σ0)
ρ2σ0−2 − σ 2

0C1

2+σ0
ρ−2 − σ 3

0 (1−σ0)

2(2−σ0)
2

tan(2γ )ρ3σ0−4 +S3(ρ,β).

(56)
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Figure 3. Local frame of reference used to derive
asymptotic solution in the jet region.
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Figure 4. Sketch of the jet flow developing about the
intersection point. From the mass-conservation law it
follows that the area enclosed by the free surface and the
two dashed lines should be equal to the flow coming in
from the far-field boundary.

The case γ =π/4 requires a particular procedure as the eigensolution and the first term in
(47) are of the same order. In this case σ0 =2/3 and it follows that

S(ρ,α)=−1
2
ρ2 −ρ 2

3 cos
(

2
3
α

)
+
[

2
9π
αsin

(
2
3
α

)
+
(
C1 − 2

9π
logρ

)
cos

(
2
3
α

)]
ρ− 2

3

+S2(ρ,α), (57)

θ̃ (ρ)=β+ 1
2
ρ− 4

3 + 1
18π

ρ− 8
3 logρ−

(
1

16π
+ 1

4
C1

)
ρ− 8

3 + θ3(ρ), (58)

S(ρ,β)=−1
2
ρ2 + 1

6
ρ− 2

3 + 1
27π

ρ−2 logρ−
(

1
24π

+ 1
6
C1

)
ρ−2 +S3(ρ, β). (59)

The constant C1 in (54–56) and in (57–59) is unknown in advance and has to be recovered
together with the complete solution of the inner problem.

6. Asymptotic behavior of the flow in the jet region

Close to the wedge surface, the inner solution exhibits a jet formation whose asymptotic
behavior can be investigated with the help of a shallow-water approximation. To this end a
local coordinate system Oξζ is introduced with the axis Oξ directed along the wedge surface
and the free surface described by the equation ζ = h(ξ) (see Figure 3). The modified veloc-
ity potential on the free surface is written as S̃(ξ)=S(ξ, h(ξ)), with the function h(ξ), ξ >ξ0,
which is unknown in advance and has to be determined as a part of the solution.

Within the new coordinate system the dynamic boundary condition (31) on the free sur-
face takes the form

S̃2
ξ

1+h2
ξ

+2σ0S̃= (1−σ0)
(
ξ2 +h2(ξ)

)
, (60)

and the kinematic condition (30) gives

Sζ =hξSξ . (61)
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The integration of the Poisson equation (29) in the ζ direction yields

d
dξ

∫ h(ξ)

0
Sξ (ξ, ζ )dζ −Sξ (ξ, h(ξ))hξ +Sζ (ξ, h(ξ))−Sζ (ξ,0)=−2h(ξ).

The second and the third terms on the left-hand side compensate each other due to (61),
while the fourth term is zero due to the boundary condition on the body surface (32). Thus

d
dξ

∫ h(ξ)

0
Sξ (ξ, ζ )dζ =−2h(ξ). (62)

Due to the boundary condition on the body surface, Sζ (ξ,0)=0, and since h(ξ)→0 as ξ→
∞, the shallow-water approximation can be used. According to the shallow-water approxima-
tion we assume

S(ξ, ζ )≈ S̃(ξ) (63)

and Equation (62) yields
[
S̃ξ h

]

ξ
+2h≈0. (64)

Equations (60) and (64) can be used to evaluate approximately the free-surface shape in the
jet region. For large ξ , when the derivative hξ (ξ) is small, Equation (60) can be approximated
as

S̃2
ξ ≈ (1−σ0)ξ

2 −2σ0S̃.

The solution of the latter equation has the form

S̃(ξ)=Mξ2

with M=1/2(1−σ0) or M=−1/2. Substituting this solution in Equation (64), the following
equation is obtained for the jet thickness

ξhξ +M+1
M

h≈0.

When M=− 1
2 , we find h(ξ)≈Cξ , which contradicts the condition h(ξ)→0 as ξ→∞. When

M= 1
2 (1−σ0), we obtain

h(ξ)≈Cξ−b, b= 3−σ0

1−σ0
, (65)

which gives ξh(ξ)=O(ξ− 2
1−σ0 ) as ξ → ∞. Hence, as ξ → ∞, the jet thickness tends to zero

as O(ξ−b), where b depends on the wedge deadrise angle γ , and the liquid velocity in the jet
grows linearly

ϕξ ∼ (2−σ0)ξ as ξ→∞ (66)

with distance from the origin of the coordinate system. Therefore, the mass flux in the jet
behaves as

∫ h(ξ)

0

∂ϕ

∂ξ
(ξ, η)dη∼Cξ−2/(1−σ0) (67)

and tends to zero as ξ→∞.
Up to this point the shallow-water model has been developed within a first-order approx-

imation. To improve accuracy, a second-order shallow-water model is derived in Appendix A
and is coupled with the numerical procedure to describe the solution in the thin jet layer.
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7. Numerical pseudo-time-stepping procedure

In Section 4 two different boundary-value problems have been formulated for the velocity
potential ϕ, given by the set of Equations (27), and for the modified potential S, given by
Equations (29–33). The former, involving the Laplace equation, is simpler but it has much
more complex boundary conditions on the free surface. Hence, an iterative procedure is devel-
oped here which takes advantage of both boundary-value problems and uses Equation (28) to
pass from the velocity potential to the modified one and vice versa.

The velocity potential ϕ is sought in terms of a boundary-integral representation in a com-
putational domain bounded by the far-field boundary (FF ) located at ρ=ρF , the body con-
tour (BC) and the free surface (Figure 4). On the body contour, the Neumann boundary con-
dition ∂ϕ/∂n=0 is applied. On the free surface the modified velocity potential S is derived by
integrating the dynamic boundary condition rewritten in the form

Sτ =−
√
(1−σ0)ρ

2 −2σ0S. (68)

Integration is started from the intersection of the free surface with the far-field boundary
where the modified velocity potential is provided by the far-field asymptotics. The position
of the intersection point θ̃ (ρF ) is given by Equations (52), (55) or (58) for γ larger, smaller
or equal to π/4, respectively. Correspondingly, Equations (53), (56) or (59) are used to assign
the starting value S(ρF , θ̃(ρF )) and Equations (51), (54) or (57) are used to assign the modi-
fied velocity potential at the far-field boundary. Then, Equation (28) allows to derive ϕ from
S. The radius of the far-field boundary is chosen such that the far-field asymptotics describe
the solution to the desired accuracy for ρ≥ρF . The far-field asymptotic estimate is also used
to derive a first guess for the free-surface shape.

In order to avoid the intrinsic limit that boundary-element approaches have in describing
the solution within layers of thickness comparable to the panel size, the shallow-water model is
adopted to derive the solution in the thinner part of the jet. This part is not distinguished dur-
ing several iterations at the beginning. However, as the iterations proceed, the thin jet develops
and the angle at the intersection between the free surface and the body contour progressively
decays. When it becomes smaller than a threshold value, the shallow-water model is activated
and integrated into the boundary-integral representation. The details of the space marching
procedure used to derive the shallow-water solution are reported at the end of Appendix A.
For the purpose of this section, it is useful to recall that the shallow-water model provides the
free-surface shape, the velocity potential and its normal derivative along the jet contour.

On the basis of the above considerations, when writing the boundary-integral representa-
tion of the velocity potential, the contributions to the integrals of the part of the fluid bound-
ary lying inside the shallow-water region SW are treated as known terms, and the boundary-
integral equation reads

1
2
ϕ(x)+

∫

BC

ϕ(y)
∂G

∂n
(x −y)ds(y)−

∫

FS∪FF
∂ϕ

∂n
(y)G(x −y)ds(y)

=
∫

BC∪SW
∂ϕ

∂n
(y)G(x −y)ds(y)−

∫

FS∪FF∪SW
ϕ(y)

∂G

∂n
(x −y)ds(y), (69)

where FS denotes the portion of the free surface outside the modeled part of the jet. Here
G(x)= 1

2π log |x| is the Green’s function of the Laplace equation and x= (λ,µ). The first term
on the left-hand side is known at any point of both the free surface and the far-field bound-
ary and is then moved to the right part when x ∈ FF ∪ FS. The right-hand side of Equa-
tion (69) is known at each step of the iterations with the first term being zero along the body
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contour due to the condition ∂ϕ/∂n= 0 and the velocity potential on the far-field boundary
assigned by the far-field asymptotics, as discussed above.

The solution of the boundary-integral equation is achieved through a panel method. The
boundary of the computational domain is discretized with straight-line panels, along which a
constant value of the velocity potential and of its normal derivative are assumed. Once Equa-
tion (69) has been solved, the distribution of the normal derivative of the velocity potential
∂ϕ/∂n on the free surface is obtained and used to compute ∂S/∂n. After that we verify if
the kinematic boundary condition on the free surface, as given by Equation (30), is satisfied
to the desired accuracy. If not, the centroids of the panels are moved in a time-stepping fash-
ion by using ∇S as the velocity field. Then we reconstruct the distribution of the vertices of
the panels with the help of cubic splines.

In order to preserve the accuracy of the calculation, the discretization is refined at each
iteration. In particular, the size of the first free-surface panel closest to the jet is progressively
adjusted so as to be of the order of the local thickness of the jet. Starting from this value,
a growth factor for the panel size is used up to completely fill the free-surface configuration;
a similar procedure is used to discretize the body contour. To avoid the occurrence of panels
that are too short, the smallest size is limited to a fraction of the initial size of the free-surface
panel closest to the body. Once the free-surface discretization is updated, the dynamic bound-
ary condition (68) is integrated along it to obtain, as discussed before, the velocity potential
along the free surface and the integral equation (69) is solved once again.

The iterative procedure continues until the kinematic condition (30) is satisfied at a desired
accuracy. To this end the integral

K=
∫

FS

(
∂S

∂n
(y)
)2

ds(y) (70)

is evaluated and iterations are repeated until K becomes smaller than a threshold value.
Besides evaluating the quantity K given by Equation (70), the fulfillment of mass conservation
is carefully analyzed. For incompressible fluids, it follows that

∫

FF∪FS
∂ϕ

∂n
ds=0, (71)

where, due to Equations (28) and (30),

∂ϕ

∂n
=ρ ∂ρ

∂n

along the free surface FS, so that
∫

FF

∂ϕ

∂n
ds=−

∫

FS

ρ
∂ρ

∂n
ds, (72)

where the term on the right-hand side represents the area of the region swept by a vector con-
necting the origin with a point on the free surface when the point moves from the far-field
to the jet apex (Figure 5). When the jet region is modeled within the shallow-water approxi-
mation, Equation (72) takes the form

∫

FF

∂ϕ

∂n
ds=−

∫

FS∪SW
ρ
∂ρ

∂n
ds, (73)

where
∫

SW

ρ

(
∂ρ

∂n

)
ds=2

∫ ∞

ξ0

h(ξ)dξ + ξ0h(ξ0),

with h(ξ)=h(ξ0)H0(ξ), as it follows from the definition (A1).
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Figure 5. The computational domain and the discretization of its boundary employed at the first iteration are here
shown. (a) the whole computational domain, (b) detail of the free surface discretization.

For deadrise angles equal or smaller than π/4 the modified velocity potential and the free-
surface shape given by the far-field asymptotics contain an undetermined constant C1 which
must be evaluated together with the solution in the intermediate region. To this end the far-
field expansions are recast in a way that represents the velocity potential and its normal deriv-
ative as the sums of two contributions

ϕ≈ϕ0 +C1ϕ1,
∂ϕ

∂n
≈ ∂ϕ0

∂n
+C1

∂ϕ1

∂n
, (74)

where subscript 1 denotes the eigensolution parts. By using expressions (74) in the boundary-
integral equation (69) we obtain

1
2
ϕ(x)+

∫

BC

ϕ(y)
∂G

∂n
(x −y)ds(y)−

∫

FS∪FF
∂ϕ

∂n
(y)G(x −y)ds(y)

+C1

∫

FF

ϕ1(y)
∂G

∂n
(x −y)ds(y)=

∫

BC∪SW
∂ϕ

∂n
(y)G(x −y)ds(y)

−
∫

FS∪SW
ϕ(y)

∂G

∂n
(x −y)ds(y)−

∫

FF

ϕ0(y)
∂G

∂n
(x −y)ds(y). (75)

The additional equation needed to close the linear system of Equation (75) is obtained by
requiring that the flow coming in from the far-field boundary must be equal to the sum of
the two contributions from ϕ0 and ϕ1, that is,

−
∫

FF

∂ϕ

∂n
ds+C1

∫

FF

∂ϕ1

∂n
ds=−

∫

FF

∂ϕ0

∂n
ds. (76)

Once the linear system (75) with Equation (76) is solved, the constant C1 is used at the next
iteration to update the position of the intersection between the free surface and the far-field
boundary by Equations (55) or (58) depending on γ <π/4 or γ =π/4, respectively. Next, the
value of this constant is used in Equation (56) or (59) to compute the velocity potential at the
last free-surface vertex and, then, to update the velocity potential all along the free surface.

8. Numerical results

The numerical model presented in the previous section is applied to derive the self-similar
solution of the inner problem for deadrise angles larger (γ = π/3) and smaller (γ = π/6)
than π/4. Since the asymptotic expansions derived in Section 5 are used outside the com-
putational domain, that is, for ρ >ρF , the far-field radius ρF is assigned is such a way that
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terms of order O(ρ3σ0−5) can be neglected in the expansions to within the desired accu-
racy for ρ > ρF . In the following calculations, the far-field radius has been chosen so that
ρ

3σ0−5
F = 10−4. The initial size of the first panel on the free surface closest to the body is

0·1 and the smallest panel size is limited to 1/50 of this value. A growth factor 1·05 is used
to increase the panel size to fill the free-surface shape. The shallow-water approximation is
usually activated when the angle of the free surface with the body contour drops below 10
degrees.

In Figure 5a, b both the initial discretization and the computational domain are shown
in the case γ = π/3 with ρF ∼ 28. Figure 6 shows the distribution of ∂S/∂n along the
initial guess of the free-surface position. The iterative procedure is started from this con-
figuration and in Figure 7 the history of K versus the iteration number is depicted. Due
to numerical approximations, the accuracy of the kinematic boundary condition does not
go below a threshold value. However, a comparison between the solutions after 1500
and 3000 iterations shows that they essentially overlap in terms of both the free-sur-
face shape (Figures 8a, b) and the modified velocity potential (Figure 9). There are two
lines in Figure 9 but a difference between them is not visible. It is seen also that the
function S on the free surface changes rather smoothly at the matching point between
the intermediate region and the jet region. As the iterations continue, the enclosed area
tends to the incoming flow (Figure 10) as required by Equation (73). Since ∂ϕ/∂n along
the far-field boundary is unknown and is determined from the solution of the
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Figure 6. Distribution of the normal derivative of
the modified velocity potential ∂S/∂n along the ini-
tial free-surface configuration.
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Figure 8. Free surface configuration at two different steps of the iterative procedure: (a) whole free surface; (b)
close-up view of the jet region. The free surface shape after 1500 iterations is shown with the solid line and after
3000 iterations with the dashed line.
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ary (solid line) and the area enclosed by the free
surface (dashed line).
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Figure 11. Effect of the extension of the computational domain on the final solution: (a) whole free surface; (b)
detailed view of the region about the far-field boundary of the smallest domain. Key: small domain with ρF ∼ 28
(solid line), large domain with ρF ∼66 (dashed line).

boundary-integral-equation within the numerical procedure, the incoming flow slightly changes
in time.

Several tests were carried out to check the independence of the solution of the extension
of the computational domain (Figure 11a, b), of the limit angle used to cut the jet (Figures 12
and 13) and of the resolution employed (Figures 14a, b and 15). The tests proved stability and
accuracy of the numerical algorithm developed.

In the case γ =π/6, the efficiency of the new formulation (75) and (76) presented at the
end of the previous section, is investigated. Since the use of larger computational domains
reduces the effect of the eigensolution part, three calculations are performed by using three
different values of the radius ρF of the far-field boundary, with the eigensolution term only
included for the smallest domain. In particular, the smallest radius is chosen so that ρ3σ0−5

F 
10−4, which leads to ρF  18. Correspondingly, other calculations are performed in larger
computational domains with ρ3σ0−5

F 10−5,10−6, that is ρF 36 and 75, respectively. In Fig-
ure 16a the behavior of these three solutions, close to the end of the shortest domain, is
shown to highlight the role of the eigensolution term and the effectiveness of the formula-
tion (75) and (76). It is worth noticing that an improvement of the accuracy is also achieved
in the jet region (Figure 16b).
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Figure 15. Comparison of the convergence histories of the enclosed area obtained when using different initial dis-
cretization. Key: initial first panel size 0·4 (solid line), initial first panel size 0·1 (dashed line).

In Figure 17 the behavior of the constant C1 versus the iteration number and the pseudo-
time has been plotted. In particular Figure 17a shows that the convergence of the constant
versus the iteration number is not uniform, with an apparent convergence reached after about
1000 iterations and a successive, final, convergence achieved after about 2000 iterations.

The reason for this behavior stems from the use of a variable time step in the iterative pro-
cedure. In fact, for stability reasons the time step dt is adjusted so that the displacement of
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Figure 17. Convergence history of C1 for γ =π/6 ver-
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the panel centroid, which is |∇S|dt , is always smaller than one fourth of the corresponding
panel length. As a consequence, very small-time steps occur during the iterative process due
to the occurrence of very short panels. This hypothesis is confirmed by looking at Figure 17b,
where the same quantity is plotted versus the pseudo-time. In this case the convergence behav-
ior appears to be remarkably uniform.

In Figure 18a, b the histories of the enclosed area and of the incoming flow are shown,
versus the iteration number, for the smallest and the largest computational domains. It is seen
how, apart from reducing the size of the computational domain needed, the use of (75) and
(76) makes the convergence much faster. Also in this case the apparent non-uniform conver-
gence of the enclosed area is a result of the very small-time steps occurring during the itera-
tive process.

By using the same computational procedure, solutions for deadrise-angle values from 10
to 45 degrees are computed and the constant of the eigensolutions is reported in Table 1 and
plotted in Figure 19 versus the deadrise angle value.

9. Conclusions

The initial stage of the free-surface flow generated by the impulsive start of a wedge initially
floating on the free surface has been carefully analyzed through a small-time expansion proce-
dure. Due to the singularity of the flow about the intersection points, a first-order inner solu-
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Figure 18. Comparison between the incoming flow and the enclosed area for γ = π/6: (a) smallest computational
domain, ρf ∼ 18, and the new formulation; (b) largest computational domain, ρF ∼ 75. Key: incoming flow (solid
line), enclosed area (dashed line).

Table 1. Constant of the eigensolution for
several deadrise-angle-values.

γ C1

10 −1· 4630
15 −1· 0874
20 −0· 8862
25 −0· 7620
30 −0· 6795
35 −0· 6303
40 −0· 5998
45 −0· 5651
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Figure 19. Plot of the constant of the eigensolution
C1 versus the deadrise angle. Corresponding values
are reported in Table 1.

tion has been derived in terms of a suitable set of stretched variables. It is shown that, as long
as V t/h0 →0, the inner solution is self-similar and nonlinear.

The system of partial differential equations governing the flow close to the intersection
points has been used to derive asymptotic estimates of the flow behavior in both the far-
field and the jet regions. The two asymptotic estimates are directly coupled with the numerical
solver thus achieving a high efficiency in the iterative procedure. When dealing with deadrise
angles equal to or smaller than π/4, eigensolutions have been found in the asymptotic esti-
mate of the far-field behavior. For this case, the numerical model has been suitably modified
in order to recover the eigenvalue directly as part of the solution.

The approach has been illustrated for two deadrise angles, π/6 and π/3, the former case
being chosen to show the efficiency of the numerical approach for deriving the eigenvalue
as part of the solution. It is worth remarking that for rather small deadrise angles the way
used to define the set of inner variables cannot always ensure good accuracy but the approach
developed by Oliver [9] on the base of the Wagner approximation should be employed instead.

The asymptotic behavior (14) of the first-order outer velocity potential close to the inter-
section point is not only a feature of the particular problem of floating-wedge impact. This
asymptotic formula is valid also for any flared floating contour, with γ being the angle
between the tangential to the contour at the intersection point and the initially undisturbed
free surface and the coefficient A dependent on the body shape and on the entry velocity.
With this consideration, the performed analysis of the local solution near the intersection
point is also valid for any floating body with 0<γ <π/2.
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It is expected that in the three-dimensional problem of floating body impact, where the
body is smooth and flared, the asymptotic behavior of the outer potential near the intersec-
tion line is also described by Equation (14), which is valid at any point of the intersection
line (see [17] for more details). Now γ is the local deadrise angle, the polar coordinates (r, θ )
are in the vertical plane, which is locally normal to the body surface and the “constant” A in
Equation (14) is a function of the coordinate along the intersection line. Therefore, the analy-
sis presented in this paper has a much wider field of application than just for the plane prob-
lem of floating-wedge impact.
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Appendix A: Second-order shallow water approximation

In order to improve the accuracy in the description of the flow in the jet region, a second-
order shallow-water approximation is derived here. To this end, we fix a positive ξ0 and take
the quantity ε=h(ξ0) as a small parameter (Figure 3). With this assumption the local thick-
ness of the jet is sought in the form

h(ξ)= εH(ξ), (A.1)

where H(ξ0)=1 and H(ξ)≤1 for ξ >ξ0. In order to start the asymptotic analysis of the flow,
the jet region is mapped onto the rectangular domain 0<z<1, ξ >ξ0 by the relation

ζ = εH(ξ)z, (A.2)

and the new unknown function

s(ξ, z)=S(ξ, εH(ξ)z) (A.3)

is introduced to represent the modified velocity potential in the jet region. By using Equations
(A.1–A.3), we obtain

Sξξ = sξξ −2zsξz
Hξ

H
+ zsz

(
Hξ

H

)2

+ z2szz

(
Hξ

H

)2

− zsz
(
Hξ

H

)

ξ

, Sζζ = szz
(

1
εH

)2

.

The Poisson equation (29) can be rewritten in the new variables as

szz

[
1+ ε2z2H 2

ξ

]
+ ε2

[
H 2sξξ −2zHHξsξz+ zH 2

ξ sz− z
(
HξξH −H 2

ξ

)
sz

]
=−2ε2H 2,

(0<z<1 , ξ >ξ0). (A.4)

The kinematic boundary condition (30) implies that Sζ =hξSξ on the free surface z=1, which
leads to

sz= ε2Hξ
(
Hsξ − zszHξ

)
(z=1 , ξ >ξ0), (A.5)
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while the body boundary condition (32) provides

sz=0 (z=0 , ξ >ξ0). (A.6)

The dynamic boundary condition (31), which in terms of the new variables takes the form

S̃2
ξ

(1+h2
ξ )

+2σ0S̃= (ξ2 +h2)(1−σ0) (ξ >ξ0),

with S̃(ξ)=S(ξ, h(ξ))= s(ξ,1), gives

s2
ξ =

[
(1−σ0)

(
ξ2 + ε2H 2

)
−2σ0s

]
(1+ ε2H 2

ξ ) (z=1, ξ >ξ0). (A.7)

We assume that at ξ =ξ0 on the free surface, the matching with the numerical solution of the
boundary-value problem (29–33) is enforced in terms of jet thickness h(ξ0)=h0 and modified
velocity potential S(ξ0, ε)=S0. Therefore

s(ξ0,1)=S0, (A.8)

and from the first-order approximation we have that

s(ξ, z)∼ 1
2
(1−σ0)ξ

2 (ξ→∞). (A.9)

The boundary-value problem (A.4–A.9) contains the small parameter ε. The solution of
the problem is sought in the form of the asymptotic expansions

s(ξ, z)= s0(ξ, z)+ ε2s1(ξ, z)+ ε4s2(ξ, z)+· · · , (A.10)

H(ξ)=H0(ξ)+ ε2H1(ξ)+ ε4H2(ξ)+· · · . (A.11)

We shall derive equations which govern the second-order solution of the flow in the jet region.
Substituting expansions (A.10) and (A.11) in the governing equations (A.4–A.9) and col-

lecting terms of the same order as ε → 0, we obtain a boundary-value problems for the
unknown functions sj (ξ, z) and Hj(ξ). At the leading order the Poisson equation (A.4) reads

s0zz=0 (0<z<1) (A.12)

while the kinematic condition (A.5) and the body boundary condition (A.6) give

s0z=0 (z=0,1). (A.13)

Equations (A.12) and (A.13) imply that s0 only depends on ξ and can be found with the help
of the dynamic boundary condition (A.7) which, at the leading order, provides

s2
0ξ +2σ0s0 = (1−σ0)ξ

2. (A.14)

The general solution of the differential equation (A.14), with account for condition (A.9), is
sought in the form

s0(ξ)= ξ2k(ω), ω= log ξ, (A.15)

where k(ω)→ 1
2 (1−σ0) as ω→∞. Substituting (A.15) in (A.14), we obtain

dk
dω

=
√

1−σ0 −2σ0k−2k. (A.16)



124 A. Iafrati and A.A. Korobkin

By introducing a new function v=√
1−σ0 −2σ0k , it follows that

k= 1−σ0

2σ0
− v2

2σ0

which, after differentiation with respect to ω, provides

dk
dω

=− v

σ0

dv
dω
. (A.17)

Combining Equations (A.16) and (A.17), we obtain

v

v2 +σ0v+σ0 −1
dv=−dω,

whose integration leads to the equation

v(ξ)=1−σ0 +Dξ−(2−σ0)/(1−σ0)(1+v)−1/(1−σ0) (A.18)

with an arbitrary constant D. In order to recover the relation between v and the modified
velocity potential s0, the definitions of k and v can be used to get

v2ξ2 = (1−σ0)ξ
2 −2σ0s0, (A.19)

which, together with the dynamic boundary condition (A.14), gives

s0ξ = ξv. (A.20)

The constant D in (A.18) is determined numerically with the help of condition (A.8) at ξ=ξ0,
which gives s0(ξ0)=S0, and Equations (A.18) and (A.20). Equations (A.18) and (A.19) com-
pletely determine the velocity potential to leading order.

Within the second-order, the Poisson equation (A.4) gives

s1zz=−2H 2
0 −H 2

0 s0ξξ (A.21)

whose solution has to satisfy the boundary condition on the body s1z = 0, where z= 0, and
the kinematic and dynamic boundary conditions on the free surface, z=1, that read

s1z=H0ξH0s0ξ (A.22)

and

2s0ξ s1ξ = (1−σ0)H
2
0 −2σ0s1 +H 2

0ξ [(1−σ0)ξ
2 −2σ0s0], (A.23)

respectively. The general solution of Equation (A.21) has the form

s1(ξ, z)=−z
2

2

[
2H 2

0 +H 2
0 s0ξξ

]
+B(ξ), (A.24)

which already accounts for the body boundary condition. The function B(ξ) in (A.24) is
determined from the dynamic boundary condition (A.23), where H0(ξ) is still unknown.

The kinematic boundary condition (A.22) and representation (A.24) lead to the following
differential equation with respect to this function

d
dξ

(
H0s0ξ

)=−2H0 (ξ >ξ0), (A.25)

which has to be solved under the condition H0(ξ0)=1.



Starting flow generated by the impulsive start of a floating wedge 125

Substitution of representation (A.24) in the dynamic boundary condition (A.23) leads to
the differential equation for the function B(ξ)

2s0ξBξ +2σ0B=−2H 2
0 −2σ0H0H0ξ s0ξ +2H0H0ξ (1−σ0)ξ, (z=1), (A.26)

where dynamic boundary condition for the leading term (A.14) and Equation (A.25) have
been used to simplify the right-hand side. Let B(ξ)=b(ξ)−σ0H

2
0 (ξ)/2, then Equation (A.26)

becomes

s0ξ bξ +σ0b=−H 2
0

(
1− 1

2
σ 2

0

)
+H0H0ξ (1−σ0)ξ. (A.27)

The latter equation is used to compute b(ξ) and B(ξ) thereafter. The initial value b(ξ0) is
recovered using condition (A.8), which gives s1(ξ0,1)=0. Taking into account that

s1(ξ0,1)=−1− σ0

2
− 1

2
s0ξξ +b(ξ)

and

s0ξξ =−σ0 + 1−σ0

v(ξ)
, (A.28)

we obtain

b(ξ0)=1+ 1−σ0

2v(ξ0)
. (A.29)

The above problem is solved numerically through a space-marching procedure which is
started at a position ξ = ξ0 where the angle between the free surface and the body contour
is equal to a threshold value. At that point the local thickness of the jet h(ξ0) and the local
value of the modified velocity potential S0 =S(ξ0, h(ξ0)), as provided by the numerical solu-
tion in the remaining fluid domain, are used as starting values for the shallow-water solution.
The step �ξ used to advance the system of shallow-water equations is set to be one half of
the first panel on FS closest to the shallow-water boundary SW .

From the definitions, at ξ = ξ0 we have H(ξ0)= 1 and s0(ξ0)=S0 with ε=h(ξ0) and S0 =
S(ξ0, ε). Then, from Equations (A.19) and (A.20), v(ξ0) and s0ξ (ξ0) are computed, respec-
tively. Through iterative solution of Equation (A.18) the constant D is derived and the initial
value b(ξ0) is provided by Equation (A.29). By using Equations (A.25) and (A.28) an estimate
of the free-surface slope at ξ = ξ0 can be also obtained as

H0ξ = H0

s0ξ

(
−2+σ0 − 1−σ0

v

)
. (A.30)

Starting from these values, the solution is advanced with a step �ξ . Equation (A.18) is
first solved iteratively to get the function v at the new location ξ0 +�ξ . Then, Equations
(A.20) and (A.19) are used to compute s0ξ and s0 at (ξ0 +�ξ), respectively, while the jet
thickness H0 is directly given by the discretized form of Equation (A.25). Equation (A.30)
then gives H0ξ (ξ0 +�ξ) which is used in Equation (A.27) to get b(ξ0 +�ξ) and then the
second-order correction of the potential s1(ξ0 +�ξ, z) through Equation (A.24). This space-
marching procedure is carried out until a very small thickness is reached. Once the above pro-
cedure has been completed, the local shape of the free surface and the corresponding distri-
butions of both the velocity potential and its normal derivative along the free surface and on
the wetted part of the body are available.
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